Karthik Subbian T

Introduction

@ Most current recommender systems are designed
in the context of offline setting.

@ It is desirable to provide real-time
recommendations in large-scale scenarios.

@ Some applications: social networks, movie/book
suggestions, dating.

Challenges

@ Changing user preferences:
o New items keep appearing.

o The underlying user patterns keep changing.

o This causes the recommendations to vary with time.

@ In-core memory for memory-resident operations is
quite limited.

@ Classical methods like neighborhood-based and
latent factor models have shortcomings.

o They require a computationally expensive offline phase.

o Factorizing large matrices is cumbersome when the said
matrices are rapidly changing with time.

The Setup

@ The ratings are received in the format:
<userID, 1itemID, rating>.

o If rating is drawn from {—1,+1}, then let users

who have given a rating of +1 to item / at time t
be represented by P(i,t) and —1 by N(/, t).

@ Since exact similarity computation is intensive,
we compute it probabilistically by imposing a sort
order on the users with the help of hash
functions.

o Use d mutually independent hash functions.

o Each hash function takes in an identifier of a user and
outputs a random number uniformly distributed in (0, 1).

Probabilistic Similarity

@ Now, for a given sort order, what is the
probability that the first user with a positive
rating for item / is the same as the first user with
a positive rating for item 7

@ [his is the probability that both / and j take on
the value +1 when at least one of them takes on
the value of +1 given by:

P(i,t) N P(j, t)
P(i,t) U P(j, t)

@ [he above expression represents the similarity
between items / and j with respect to positive
ratings.

Subbian, Aggarwal, Hegde (UMN, IBM)

Recommendations for Streaming Data

Charu Aggarwal *

TUniversity of Minnesota - Minneapolis, MN
*IBM Watson Research Center - Yorktown Heights, NY

CIKM 2016

Probabilistic Similarity

@ The d mutually independent hash functions are
applied to the user indices that have rated item |
positively.

@ For each hash function, the least hash value
(min-hash value) among these positive users and
the corresponding user index (min-hash index)
are maintained.

@ d of such pairs are maintained for the n items
seen which are easily updatable. This drastically
reduces memory requirements.

@ Similarly, the process is repeated for negatively
rated items. The system can be extended for
scenarios with multiple ratings as well.

Probabilistic Similarity

@ How good is the quality of the similarity measure
computed in this manner?

olLet R™(/,/, t) be an approximation to the
Jaccard coefficient computed by the min-hash
approach and 57(/, /, t) be the actual value.
Then, we prove the following:

@ Lower Tail Bound: For any € € (0,1), R™(/, , t)
lies outside S™(/, j, t) by a factor of (1 — €) with
the probability:

P(R™(i.j,t) <(1—€)-57(i.j, 1))
< exp(—d - S7(i,j, t) - €/2)

@ Upper Tail Bound: For any € € (0,2 - e — 1),
R™(i,j, t) lies outside by a factor of (1 + €) with
the probability:

P(RT(i,j,t) > (1 +€)-S7(i,j, t))
< exp(—d - S'(i,j. 1) €*/4)

@ We address the problem of providing
recommendations in a streaming setting.

@ We provide an efficient algorithm to perform
streaming recommendations using a probabilistic
model.

@ [he proposed algorithm stores the rating matrix
compactly and hence memory requirements are
low.

@ Our thorough experiments show that the
proposed method performs as good or better
than the state-of-the-art.

Recommendations for Streaming Data

Kshiteesh Hegde T

200

180
160 - e ALS
PMF

+ RBM
SGD

(BN
N
o

= SVDPP
—@— STREAMREC

et
essescserese st X

-6—-0-6—-6—-6—-6-6-6—-6—-6—-6-6—-6-6-6-6-6-6-6-0
2 3 4 5 6 7 8 9 10 11

NO. OF TRAINING RECORDS SEEN x10°

JERN
N
o

RUNTIME (IN SECS.)
A o ® o
5 © o o

N
o

o

(a) Books Runtime

600

m—f— AL S

PMF

SGD

| —%— svbppP
—©— STREAMREC

N
o
o

300

RUNTIME (IN SECS.)

2 4 6 8 10 12 14 16
NO. OF TRAINING RECORDS SEEN x10°

(b) Dating Runtime
Figure: Runtime

2 4 6 8 10 12 14 16
NO. OF TRAINING RECORDS SEEN «10°

(a) Sensitivity Dating RMSE

400

350

300

250

200

RUNTIME (IN SECS.)

[EEN
a1
o

100

50 .
G bt
0-6-6-6-6-6-6-0-6-60-6-6-6-66-6-66-6-90

2 4 6 8 10 12 14 16
NO. OF TRAINING RECORDS SEEN «10°

0

(b) Sensitivity Dating Runtime
Figure: Sensitivity

T T
PMF
+ RBM
SGD

= SVDPP
5| el STREAMREC | |

55

2 3 4 5 6 7 8 9 10
NO. OF TRAINING RECORDS SEEN x10°

(a) Books RMSE

T T
PMF
= RBM
SGD

= SVDPP
Q=== STREAMREC

2 4 6 8 10 12 14 16
NO. OF TRAINING RECORDS SEEN x10°

(b) Dating RMSE
Figure: Efficiency

CIKM 2016

1/1

