
Recommendations for Streaming Data

Karthik Subbian † Charu Aggarwal ∗ Kshiteesh Hegde †

†University of Minnesota - Minneapolis, MN

∗IBM Watson Research Center - Yorktown Heights, NY

CIKM 2016

Introduction
Most current recommender systems are designed
in the context of offline setting.

It is desirable to provide real-time
recommendations in large-scale scenarios.

Some applications: social networks, movie/book
suggestions, dating.

Challenges
Changing user preferences:
o New items keep appearing.

o The underlying user patterns keep changing.

o This causes the recommendations to vary with time.

In-core memory for memory-resident operations is
quite limited.

Classical methods like neighborhood-based and
latent factor models have shortcomings.
o They require a computationally expensive offline phase.

o Factorizing large matrices is cumbersome when the said
matrices are rapidly changing with time.

The Setup
The ratings are received in the format:
<userID, itemID, rating>.

If rating is drawn from {−1,+1}, then let users
who have given a rating of +1 to item i at time t
be represented by P(i , t) and −1 by N(i , t).

Since exact similarity computation is intensive,
we compute it probabilistically by imposing a sort
order on the users with the help of hash
functions.
o Use d mutually independent hash functions.

o Each hash function takes in an identifier of a user and
outputs a random number uniformly distributed in (0, 1).

Probabilistic Similarity
Now, for a given sort order, what is the
probability that the first user with a positive
rating for item i is the same as the first user with
a positive rating for item j?

This is the probability that both i and j take on
the value +1 when at least one of them takes on
the value of +1 given by:

P(i , t) ∩ P(j , t)

P(i , t) ∪ P(j , t)

The above expression represents the similarity
between items i and j with respect to positive
ratings.

Probabilistic Similarity
The d mutually independent hash functions are
applied to the user indices that have rated item j
positively.

For each hash function, the least hash value
(min-hash value) among these positive users and
the corresponding user index (min-hash index)
are maintained.

d of such pairs are maintained for the n items
seen which are easily updatable. This drastically
reduces memory requirements.

Similarly, the process is repeated for negatively
rated items. The system can be extended for
scenarios with multiple ratings as well.

Probabilistic Similarity
How good is the quality of the similarity measure
computed in this manner?

Let R+(i , j , t) be an approximation to the
Jaccard coefficient computed by the min-hash
approach and S+(i , j , t) be the actual value.
Then, we prove the following:

Lower Tail Bound: For any ε ∈ (0, 1), R+(i , j , t)
lies outside S+(i , j , t) by a factor of (1− ε) with
the probability:

P(R+(i , j , t) < (1− ε) · S+(i , j , t))

≤ exp(−d · S+(i , j , t) · ε2/2)

Upper Tail Bound: For any ε ∈ (0, 2 · e − 1),
R+(i , j , t) lies outside by a factor of (1 + ε) with
the probability:

P(R+(i , j , t) > (1 + ε) · S+(i , j , t))

≤ exp(−d · S+(i , j , t) · ε2/4)

Summary
We address the problem of providing
recommendations in a streaming setting.

We provide an efficient algorithm to perform
streaming recommendations using a probabilistic
model.

The proposed algorithm stores the rating matrix
compactly and hence memory requirements are
low.

Our thorough experiments show that the
proposed method performs as good or better
than the state-of-the-art.

Results

NO. OF TRAINING RECORDS SEEN #105

2 3 4 5 6 7 8 9 10 11

R
U

N
T

IM
E

 (
IN

 S
E

C
S

.)

0

20

40

60

80

100

120

140

160

180

200

ALS

PMF

RBM

SGD

SVDPP

STREAMREC

(a) Books Runtime

(b) Dating Runtime

Figure: Runtime

Results

2 4 6 8 10 12 14 16
NO. OF TRAINING RECORDS SEEN #106

3

3.05

3.1

3.15

3.2

3.25

3.3

3.35

3.4

R
M

S
E

NO. OF HASH FNS.=20

NO. OF HASH FNS.=50

NO. OF HASH FNS.=100

NO. OF HASH FNS.=500

(a) Sensitivity Dating RMSE

2 4 6 8 10 12 14 16
NO. OF TRAINING RECORDS SEEN #106

0

50

100

150

200

250

300

350

400

R
U

N
T

IM
E

 (
IN

 S
E

C
S

.)

NO. OF HASH FNS.=20

NO. OF HASH FNS.=50

NO. OF HASH FNS.=100

NO. OF HASH FNS.=500

(b) Sensitivity Dating Runtime

Figure: Sensitivity

Results

NO. OF TRAINING RECORDS SEEN #105

2 3 4 5 6 7 8 9 10

R
M

S
E

3.5

4

4.5

5

5.5
ALS

PMF

RBM

SGD

SVDPP

STREAMREC

(a) Books RMSE

NO. OF TRAINING RECORDS SEEN #106

2 4 6 8 10 12 14 16

R
M

S
E

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

ALS
PMF
RBM
SGD
SVDPP
STREAMREC

(b) Dating RMSE

Figure: Efficiency

Subbian, Aggarwal, Hegde (UMN, IBM) Recommendations for Streaming Data CIKM 2016 1 / 1


