
Recommendations For Streaming Data

Karthik Subbian
University of Minnesota

Minneapolis, MN
karthik@cs.umn.edu

Charu Aggarwal
IBM Watson Research Center

Yorktown Heights, NY
charu@us.ibm.com

Kshiteesh Hegde
University of Minnesota

Minneapolis, MN
hegde@cs.umn.edu

ABSTRACT
Recommender systems have become increasingly popular in
recent years because of the broader popularity of many web-
enabled electronic commerce applications. However, most
recommender systems today are designed in the context of
an offline setting. The online setting is, however, much more
challenging because the existing methods do not work very
effectively for very large-scale systems. In many applica-
tions, it is desirable to provide real-time recommendations in
large-scale scenarios. The main problem in applying stream-
ing algorithms for recommendations is that the in-core stor-
age space for memory-resident operations is quite limited.
In this paper, we present a probabilistic neighborhood-based
algorithm for performing recommendations in real-time. We
present experimental results, which show the effectiveness of
our approach in comparison to state-of-the-art methods.

1. INTRODUCTION
The increasing importance of web-enabled e-commerce ap-

plications has led to a greater popularity of recommender
systems. In collaborative filtering applications, users pro-
vide ratings for various products, and the collective intelli-
gence stored in these ratings is used in order to make rec-
ommendations. Many such systems have seen an increasing
volume of transactions and ratings, which has led to numer-
ous computational and scalability challenges. This increased
volume of ratings has been driven by the larger number of
users at these sites, and numerous ways in which implicit
feedback is received from user activities.

In many social applications, such as Facebook, items are
highly transient, and new items can appear with time. As
the underlying user patterns change, the recommendations
can also vary significantly with time. The increasing size of
such data necessitates the use of real-time streaming algo-
rithms. The two most commonly used classes of algorithms,
namely latent factor models and neighborhood-based meth-
ods, are computationally challenging. In particular, the
main challenges in scaling up recommender systems to the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CIKM’16 , October 24-28, 2016, Indianapolis, IN, USA
c© 2016 ACM. ISBN 978-1-4503-4073-1/16/10. . . $15.00

DOI: http://dx.doi.org/10.1145/2983323.2983663

real-time scenario with the aforementioned algorithms are
as follows:

• Neighborhood-based recommender systems require an of-
fline phase, which is generally computationally intensive.
It is often difficult to perform the underlying computa-
tions in real time. Furthermore, with dynamic ratings,
it becomes challenging to scale up such systems, partic-
ularly when the amount of available memory is limited.
It is crucial to be able to perform all the computations
in core because disk access is often not practical in such
settings.

• Latent factor models require the factorization of a large
matrix of entries. In cases where the matrix changes
rapidly over time, it becomes difficult to perform the fac-
torization in limited space.

• The temporal nature of recommender systems is such that
all ratings for a particular user are not received simultane-
ously. This makes the problem more difficult because the
sets of both the specified (observed) and unspecified (un-
observed) entries change dynamically with time. Clearly,
the streaming model needs to keep up with these changes
in real time.

In this paper, we present a probabilistic neighborhood-based
algorithm for performing recommendations in real-time. Our
approach uses a min-hash based scheme to construct the
underlying recommendation system. To handle the large
volume of streaming data, we propose a probabilistic data
structure for approximate and efficient model maintenance.
We also establish theoretical bounds on the approximation
error of our online model and show that the error reduces
exponentially with available memory.

1.1 Related Work
Recommender systems became increasingly popular in the

mid-nineties, as new systems such as GroupLens [11] were
proposed for recommendation. The user-based collaborative
filtering models were one of the earliest models [11]. User-
based methods utilize the ratings of similar users on the
same item in order to make predictions. While such meth-
ods were initially quite popular, they are not easily scal-
able and sometimes inaccurate. Subsequently, item-based
methods [3, 4] were proposed, which compute predicted rat-
ings as a function of the ratings of the same user on simi-
lar items. More recently personalization of recommendation
with collaborative filtering using offline min-hash clustering
was proposed [21]. There are recent attempts to character-
ize user, item, and topic relationships for recommendation

using stochastic process models in a streaming setting [8].
In another related work a similarity search approximation
for neighborhood-based model is proposed [17]. A detailed
discussion of neighborhood-based methods for recommender
systems may be found in [5, 2]. Latent factor models have
become popular in the context recommender systems [6, 10]
and some of them have been used in combination with neigh-
borhood methods [7]. Matrix factorization is another popu-
lar approach for learning latent factors and online updates
for factorization is another trend in this direction [15, 16]. A
detailed discussion of recent advances in collaborative filter-
ing, with a specific emphasis on latent factor models, may
be found in [9, 2]. A significant amount of work has been
devoted to mining algorithms for streaming data [1]. In this
paper we directly approach the problem of recommendation
in a streaming setting using a probabilistic neighborhood
model with a min-hash technique.

2. RECOMMENDATION FRAMEWORK
In this section, we will introduce the framework for the

streaming recommendation problem. A major assumption
in streaming recommendation applications is that all the
ratings of a particular user or all the ratings of a particular
item are not received at the same time. This is different from
multidimensional streaming applications in which all dimen-
sions of the same record are always received simultaneously.
In recommendation applications, a user may specify a rating
for a particular item at any given time. Furthermore, a new
user or a new item may enter the system at any given time.
In general, since ratings are never deleted, the number of
users and items may only increase over time, but they may
never decrease. Therefore, we make the assumption that
the number of users at time t is given by m(t) and items at
time t as n(t). Clearly, m(t) and n(t) can non-decreasing
with time t. Therefore, at any given time t, the size of the
ratings matrix is m(t)× n(t).

The ratings are received in the format 〈UserId, ItemId,
Rating〉, as users enter ratings over time. While it is reason-
able to assume that users will specify a rating only once for
an item, it is possible to handle duplicate ratings by retain-
ing only the latest rating entered by a user for a particular
item. Let us assume that ratings have binary values, which
are drawn from {−1,+1}. However, non-binary ratings can
also be handled in a relatively straightforward generaliza-
tion of our technique. A value of +1 indicates a liking of an
item, whereas a value of −1 indicates a dislike.

In the online setting, it may be desirable to query the
system at any given time for recommendations. Typical ex-
amples of queries are as follows: (a) determine the top-k rec-
ommended items given a user, and (b) determine the top-k
relevant users given an item. The first form of recommen-
dation is common more in web-centric applications, while
the second form is more useful for targeted marketing sce-
narios. Despite their application centric differences, the two
formulations are similar from a conceptual point of view and
minor variations of the same approach can be used to solve
both of them.

In this paper, we study a neighborhood-based approach
to perform the recommendations. The main problem of the
neighborhood-based approach is that it requires an offline
phase, in which the similarity between every pair of item
is computed. This is particularly difficult in the stream
setting because the update of a single rating may require

the re-computation of the distance between the item and all
other items. Furthermore, one cannot assume that the en-
tire ratings matrix is held in main memory. In such cases,
the approach may require several passes over the disk just to
compute the pairwise item similarity. While it is reasonable
to assume that the ratings matrix will be stored on disk, it
is important to be able to maintain memory-resident sum-
maries so that most of the computations can be performed
in main memory. As we will see later, we will design an ap-
proach which requires mostly memory-resident operations
and limited access to disk.

2.1 Offline Neighborhood-based Model
Before discussing the streaming model in detail, we will

first introduce an offline neighborhood-based model. We will
focus on item-based models because they are generally more
accurate and also particularly well suited to the streaming
scenario.

Consider two items i and j, for which only a subset of the
users have specified ratings at time t. As discussed earlier,
each rating is drawn from {−1,+1}. Let the set of users who
have specified a positive rating of +1 for item i be denoted
by P (i, t), and let the set of users who have specified nega-
tive rating of −1 of item i till time t be denoted by N(i, t).
In order to compute the neighborhood distance between the
two items, we will compute the distance separately on the
basis of their positive ratings and on the basis of their neg-
ative ratings. The similarity S+(i, j, t) between items i and
j at time t on the basis of their positively specified ratings
is as follows:

S+(i, j, t) =
P (i, t) ∩ P (j, t)

P (i, t) ∪ P (j, t)
(1)

In other words, the similarity on the basis of only the positive
rating is equal to the Jaccard coefficient between the two
sets. A corresponding notion can be defined on the basis of
the negative ratings N(i, t) and N(j, t) as S−(i, j, t).

The overall similarity between the two items is then ob-
tained by combining the positive similarity results S+(i, j, t)
and the negative similarity results S−(i, j, t). However, this
combination must appropriately weight the number of pos-
itive and the number of negative ratings. Therefore, the
combined similarity S(i, j, t) is as follows:

S(i, j, t) =
α · S+(i, j, t) + β · S−(i, j, t)

α+ β
, (2)

where, α = |P (i, t)|+ |P (j, t)| and β = |N(i, t)|+ |N(j, t)|.
Here α and β are the weights of the positive and the negative
ratings, respectively, for an item-pair combination (i, j) at
time t. These similarities are used to define the groups of
most similar items.

2.2 Predicting Ratings with Similar Items
The peer groups can be used to predict the specific rat-

ings of particular user-item combinations. The first step is
to compute the similarity of a given item with all the other
items. The weighted average of the ratings of the most simi-
lar items to a particular item i is predicted as the user rating
for that item. Let Ii(u) be the set of items most similar to
item i, for which the user u has specified ratings. Further-
more, let the specified rating of user u for item j be ruj
(assuming that a rating has indeed been specified). Then,

the overall neighborhood-based prediction pui(t) of user u
for item i at time t is as follows:

pui(t) =

∑
j∈Ii(u) (S(i, j, t) · ruj)∑

j∈Ii(u) S(i, j, t)
(3)

Note that this computation requires the determination of
the most similar items to a given item. This can require
disk-resident offline computation. Clearly, this is not a fea-
sible option for resolving online queries. In the static of-
fline setting, the most similar items to a given item are
pre-computed a priori, which are used to provide query re-
sponses. Therefore, it is crucial to set up both disk-resident
and memory-resident data structures, which can be lever-
aged effectively at query time. Although a limited amount
of access to the disk-resident ratings matrix continues to be
required, most of our approach uses probabilistic data struc-
tures, such as the min-hash index, which can be maintained
in an online fashion.

3. STREAMING RECOMMENDATIONS
In this section, we will propose a min-hash technique to

perform recommendations in a space-constrained setting.
The idea in the min-hash approach is to use a probabilis-
tic data structure, which can approximately compute the
similarity between the items.

The similarity can be approximately computed by track-
ing the relevant users for each item in a min-hash index. Let
us consider two items i and j. As before, assume that the
set of users who have rated item i positively at time t is
denoted by P (i, t) and the set of users who have rated item
j positively at time t is denoted by P (j, t). The basic idea is
to impose a sort order on the users with the help of a hash
function. What is the probability that the first user with a
positive rating for item i in this sort order is the same as
the first user with a positive rating for item j in the sort
order? This is equal to the probability that both columns
i and j take on the value of +1, when at least one of the
columns takes on the value of +1. This probability is equal

to P (i,t)∩P (j,t)
P (i,t)∪P (j,t)

, which is exactly the same as the Jaccard co-

efficient between P (i, t) and P (j, t). This is, therefore, equal
to the similarity S+(i, j, t) between items i and j. This basic
principle can be used to estimate the Jaccard coefficient by
using multiple sort orders to repeat the process and deter-
mine the fraction of cases in which the first positive rating
for both items is provided by the same user. A similar ap-
proach can be used to compute the Jaccard coefficient on
the negative ratings. Therefore, the two can be combined
in order to compute the similarity between the items. Note
that the combination of the similarity on the positive items
and the negative items requires the tracking of |N(i, t)| and
|P (i, t)|, which is performed separately. For each item, we
always separately maintain the number of positive and neg-
ative ratings of that item. This can easily be maintained in
streaming fashion.

How are these random sort orders implemented? The sort
orders are implemented with the use of a hash function.
In order to implement d mutually independent sort orders,
we use d mutually independent hash functions denoted by
f1(·) . . . fd(·). The argument of each such hash function is
the identifier of a user, and the hash function value is a ran-
dom number which is uniformly distributed in (0, 1). For
each item j in the data, the following two pieces of informa-
tion are maintained:

1. The hash functions f1(·) . . . fd(·) are applied to the user-
indices that have rated item j positively. For each hash
function fs(·), the least hash value among these positive
users is maintained. Furthermore, the user-index which
maps to the least hash value is also maintained. The
former is referred to as the min-hash value, and the latter
is referred to as the min-hash index. Because there are d
hash functions, a total of d hash function-hash value pairs
are maintained for each item. Thus, the sth pair is of the
form (fs(u), u), where u is the index of a user. Overall for
n(t) items, a total of d · n(t) pairs are maintained. This
data structure maintained over the positively rated items
is denoted by M+.

2. The hash functions f1(·) . . . fd(·) are applied to the user-
indices that have rated item j negatively. For each hash
function fs(·), the least hash value among the negative
users are maintained. As the previous case, both the hash
index and hash value are maintained. This portion of the
data structure maintained over the negatively rated items
is denoted by M−.

It is noteworthy that the size of these data structures is
much smaller than the size of the ratings matrix, when the
value of d is small. Therefore, this data structure can be
maintained in main memory.

Furthermore, the data structure can be updated efficiently.
Consider an incoming rating rui that is positive. The first
step is to apply the d hash functions to the user u to re-
sult in the d hash values f1(u) . . . fd(u). For the ith item,
its d different hash value/hash index pairs are retrieved from
M+ because the rating rui is positive. The sth current hash
value (where s ∈ {1 . . . d}) for item i in M+ is compared to
fs(u). If fs(u) is smaller than the sth current hash value in
M+, then the corresponding pair in M+ is replaced with
the new pair (fs(u), u). Otherwise, no change is made to
the sth value inM+ for item i. This process is repeated for
each value of s ∈ {1 . . . d}. If the rating rui is negative, then
exactly the same steps are used, except that the changes are
made to M− rather than M+.

Note that it is easy to compute the similarity between
two item pairs with the use of the min-hash index. For
example, the value of S+(i, j, t) is equal to fraction of the
d min-hash indices in M+, which are the same. In other
words, if i1 . . . id be the top-d min-hash indices of item i in
M+, and j1 . . . jd be the top-d min-hash indices of item j
in M+, then the similarity between items i and j can be
estimated as follows:

S+(i, j, t) ≈ R+(i, j, t) =

∑d
s=1 δ(is = js)

d
(4)

Here δ(·) is an indicator function, which takes on the value of
1 when is and js are the same, and 0, otherwise. The value
if S−(i, j, t) can be computed in a similar way, except that
the data structure M− is used to compute the similarity
rather than M+. In order to combine the similarity mea-
sures S+(i, j, t) and S−(i, j, t) into a single similarity mea-
sure S(i, j, t), the number of positive and negative ratings of
the items i and j are required. These can be dynamically
tracked in online fashion by incrementing counters tracking
the number of positive or negative ratings for each item,
as they are received. In addition, the number of specified
ratings N(i, t) for each item i is maintained separately.

3.1 Quality of Recommendations
The quality of the recommendation is highly dependent

on the quality of similarity computed. Therefore, in the fol-
lowing, we will bound the quality of the similarity, which is
computed using the min-hash approach. This is an impor-
tant result because it ensures a high fidelity for the quality
of recommendations.

Lemma 1 (Lower Tail Bound). For any ε ∈ (0, 1),
Equation 4 provides an approximated value R+(i, j, t) of the
Jaccard coefficient, which lies outside a factor (1− ε) of the
true value S+(i, j, t) with the following probability.

P (R+(i, j, t) < (1−ε)·S+(i, j, t)) ≤ exp(−d·S+(i, j, t)·ε2/2)
(5)

Proof. We restate Equation 4 here:

S+(i, j, t) ≈ R+(i, j, t) =

∑d
r=1 δ(ir = jr)

d

d · S+(i, j, t) ≈ d ·R+(i, j, t) =

d∑
r=1

δ(ir = jr)

Note that we are summing up d i.i.d. Bernoulli variables
in the aforementioned equation. This particular form of
the summation can be directly used in conjunction with the
Chernoff bound. Each element δ(ir = jr) in the summation
is a Bernoulli random variable. Furthermore, this Bernoulli
random variable is equal to 1 with probability S+(i, j, t).
In such a case, the lower-tail Chernoff bound applies to the
summation. By applying the lower tail Chernoff bound, we
obtain the following:

P (d ·R+(i, j, t) < (1− ε) · d · S+(i, j, t))

≤ exp(−d · S+(i, j, t) · ε2/2)

P (R+(i, j, t) < (1− ε) · S+(i, j, t))

≤ exp(−d · S+(i, j, t) · ε2/2)
This completes the proof.

Lemma 2 (Upper Tail Bound). For any ε ∈ (0, 2 ·
e−1), the approximated value R+(i, j, t) of the Jaccard coef-
ficient lies outside a factor (1+ε) of the true value S+(i, j, t)
with the following probability.

P (R+(i, j, t) > (1+ε)·S+(i, j, t)) ≤ exp(−d·S+(i, j, t)·ε2/4)

Due to shortage of space, we have omitted the proof for
Lemma 2. However, it is straightforward to establish the up-
per tail bound, with a similar argument to Lemma 1. Thus,
the probability of errors in the overall similarity computa-
tion reduces exponentially with increasing number of hash
functions. This ensures that the approximate approach will
yield similar results to the exact approach.

Note that whenever a rating has to be predicted for an user
and item pair, it is straight forward to compute the predicted
rating using (4), (2), and (3) (in that order). We refer to our
proposed approach as STREAMREC in our experiments.

4. EXPERIMENTAL RESULTS
We evaluate our approach in terms of its effectiveness on

prediction errors, efficiency using running time and sensitiv-
ity to change in model parameters.

4.1 Dataset
We chose two real-world public datasets to cover a differ-

ent stream lengths, number of items/users, domain diversity,
and rating scale.

Book Crossing: A four-week crawl from August to Septem-
ber 2004 from the Book-Crossing community is available
at [18]. It contains 278,858 users providing 1,149,780 rat-
ings about 271,379 books. The rating scale in this dataset
ranges from 0 to 10.
Dating: This is an online dating website1, where 17,359,346
ratings of 168,791 profiles are provided by 135,359 website
users. All users are anonymized and this data set is publicly
available [19]. Online dating website ratings are in the scale
of 1 to 10.

These public datasets are stored offline and therefore, we
had to simulate the streaming nature. In streaming settings,
the user and items pairs mostly arrive in some random order.
However, in our data sets the ratings were sorted by users
and we account for this by randomizing the order of ratings.

4.2 Baselines
We used several important well-established baselines, which

encompass both the neighborhood-based and latent-factor
models. The two most popular baselines used in evaluat-
ing recommender systems are: Alternating Least Squares
(ALS) [12] and Stochastic Gradient Descent (SGD) [10].
Probabilistic Matrix Factorization (PMF) [13] is a Bayesian
approach for matrix factorization, in which the model capac-
ity is controlled automatically by integrating over all model
parameters and hyper-parameters. SVDPP [7] is another
baseline that combines the latent factor models nicely in
to the neighborhood based models as an optimization. A
gradient descent approach is used to solve the optimization
problem. We also evaluated a two-layer undirected graphical
model, Restricted Boltzmann Machines (RBM), for collabo-
rative filtering process as another baseline. The parameters
for all baselines were tuned using a 5% validation set from
the tail end of each data set.

4.3 Evaluation Measure
We have used Root Mean Squared Error (RMSE) and

Mean Absolute Error (MAE) to quantify the effectiveness
of our approach compared to baselines. RMSE penalizes
prediction errors quadratically and the measure is affected
more significantly by larger errors. For different applica-
tions, the importance of these measure may vary. Hence, we
evaluate all approaches on both measures.

4.4 Efficiency Analysis
The most important part of a streaming algorithm is its

ability to perform model maintenance in online fashion [1].
The basic idea is to be able to deal effectively with high-
velocity data sets, by being able to efficiently perform model
updates. In this section, we will show the efficiency of main-
taining the streaming recommendation model.

We compare the running time of our approach against
various baselines in Fig. 1(a) and (d). Our approach is
extremely fast in terms of the running time compared to
all the baselines. As we progress along the stream, we see
newer items or users and more ratings have to be processed.
Therefore, as time progresses, all algorithms generally have a
larger computational burden. While all baselines take more
time to process this, our approach consistently processes
100K records in fraction of a second. This is because of the
fast probabilistic approach used for creating the summarized
representation in a fixed number of operations. The updates

1http:// libimseti.cz/

used in the probabilistic approach are straightforward, lin-
ear, and additive. This makes it ideal for the streaming
scenario.

Among the baselines, PMF and ALS were the slowest in
terms of the overall efficiency and also in terms of the rate
of increase along the progression of stream. This is because
PMF uses Markov Chain Monte Carlo (MCMC) approxi-
mation to learn the MAP estimate. The use of the MCMC
technique is extremely inefficient, particularly in the stream-
ing setting. Both SGD and SVDPP use stochastic gradient
updates and are hence relatively fast in term of running
time, at least compared to PMF and ALS. Despite their
speed, they still have larger running times when they have
to process a very large dataset.

Each approach also has an offline querying time, that is
the time taken to query the rating for an unseen user-item
pair. This time is primarily for offline testing purposes. Our
approach took 1.41 milliseconds for bookcrossing and 2.91
milliseconds for the dating datasets. While the fastest base-
lines SVDPP and SGD required less than 1 millisecond and
slowest PMF was about 4 milliseconds on all datasets. In
general, these numbers are not distinguishable from a query-
ing latency perspective, because most of the work is really
focused in the streaming setting of updating the model in
an efficient way. All the numbers reported here are using
a single CPU. However, testing using our approach is triv-
ially distributable across multiple machines or cores, as long
as the M+ and M− data structures are available across all
machines or in a shared memory.

4.5 Effectiveness Analysis
We used 5% of each dataset for validation and param-

eter tuning. Of the remaining 95% we use the first 20%
of the dataset purely for training our model. We split the
remaining data into 20 equal parts (of 3.8%) to check the ef-
fectiveness of our approach at those points. The results are
shown in Fig. 1(b,c,e,f). To evaluate each of the baselines,
we simulate a continuous stream of the training data until a
certain point of the stream and test on the next 3.8% of the
stream data. Some baselines are of course not incremental
in nature. Therefore, to obtain the complete benefit of their
approach, they were re-trained from scratch at each evalua-
tion point. In this context, it needs to be pointed out that
our approach was evaluated in a far more restricted setting
compared to the baselines, where such non-streaming “fixes”
were not allowed. We chose an arbitrarily small number of
hash functions (d = 20) for evaluating our approach. As we
show later, the effectiveness of our technique increases with
increasing the number of hash functions.

As we progress along the stream, all methods clearly ben-
efit from the increasing amount of training data. However,
the rate of decrease in RMSE is different for each method
as seen in Fig. 1(b,e). When large amounts of training data
are available, the decrease is very minimal and the methods
are quite stable. This is because the latent factor models do
not gain much in terms of additional 3.8% training data.
However, our method is quite stable as the similarity values
computed do not change until a significant number of new
users rate the item.

Another significant benefit of our approach is the much
larger change in MAE, while having a stable downward trend
in RMSE. Remember that the RMSE values are more af-
fected by a few larger errors. These trends show that the

proposed approach does not make increasing number of larger
errors, along the stream, while constantly reducing large
numbers of smaller errors. While other methods like PMF
have stable RMSE, but increasing trend in MAE. These ap-
proaches, in a sense, make increasing number of smaller er-
rors while keeping the RMSE under control (which is often
their objective).

However, note that our approach works in a restricted
streaming setting, whereas the baseline methods are allowed
offline retraining from scratch where needed. In spite of
this fact, the slightly better performance of a single baseline
approach is not very significant.

4.6 Sensitivity Analysis
Our approach is sensitive to the number of hash functions

d used in the min-hash approach. Due to lack of space, we
have shown the results for only Dating dataset. However, we
note that the results were similar for Book-crossing dataset.

As we discussed in Section 3, the reduction in approxi-
mation error in computing similarities exponentially falls off
with increasing number of hash functions. This is very ev-
ident from Fig. 2 (a) for RMSE and (b) for MAE. Thus, a
reasonable number of hash function is sufficient in practice
to achieve a good performance in terms of RMSE and MAE.

The running time, for our approach, increases linearly
with d and this is can be easily seen by looking at the cross-
section of plots in Fig. 2(c). It is clear that using smaller
number of hash functions is ideal both in terms of effective-
ness and efficiency. But this does not mean that a use of
d = 1 is ideal. In practice, we found that having around 10
to 20 hash functions is reasonable on various datasets.

5. CONCLUSIONS
With the increasing ease in ability to collect implicit and

explicit ratings through various manual and automated mech-
anisms, the importance of streaming recommendations has
increased considerably in recent years. In this paper, we
propose an efficient algorithm to perform streaming recom-
mendations by using efficient probabilistic data structures.
These data structures allow compact representations of the
ratings matrix, which can be efficiently leveraged to provide
recommendations in online time. Our approach may be con-
sidered the first truly online method for performing recom-
mendations in real time settings. Our experimental results
validate the effectiveness and efficiency of our approach over
existing methods.

6. REFERENCES
[1] C. Aggarwal. Data Streams: Models and Algorithms,

Springer, 2007.

[2] C. Aggarwal. Recommender Systems: The Textbook,
Springer, 2016.

[3] M. Deshpande, and G. Karypis. Item-based top-n
recommendation algorithms. ACM TOIS, 22(1), pp.
143–177, 2004.

[4] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl.
Item-based collaborative filtering recommendation
algorithms. WWW, pp. 285–295, 2001.

[5] C. Desrosiers and G. Karypis. A comprehensive survey
of neighborhood-based recommendation methods.
Recommender Systems Handbook, pp. 107–144, 2011.

[6] T. Hofmann. Latent semantic models for collaborative
filtering. ACM TOIS, 22(1), pp. 89–114, 2004.

NO. OF TRAINING RECORDS SEEN #105
2 3 4 5 6 7 8 9 10 11

R
U

N
TI

M
E

(IN
 S

EC
S.

)

0

20

40

60

80

100

120

140

160

180

200

ALS
PMF
RBM
SGD
SVDPP
STREAMREC

NO. OF TRAINING RECORDS SEEN #105
2 3 4 5 6 7 8 9 10

R
M

SE

3.5

4

4.5

5

5.5
ALS
PMF
RBM
SGD
SVDPP
STREAMREC

NO. OF TRAINING RECORDS SEEN #105
2 3 4 5 6 7 8 9 10 11

M
AE

2.8

3

3.2

3.4

3.6

3.8

4

ALS
PMF
RBM
SGD
SVDPP
STREAMREC

(a) Book Crossing Runtime (b) Book Crossing RMSE (c) Book Crossing MAE

2 4 6 8 10 12 14 16

x 106

0

100

200

300

400

500

600

NO. OF TRAINING RECORDS SEEN

R
U

N
TI

M
E

(IN
 S

EC
S.

)

ALS
PMF
RBM
SGD
SVDPP
STREAMREC

NO. OF TRAINING RECORDS SEEN #106
2 4 6 8 10 12 14 16

R
M

SE

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

ALS
PMF
RBM
SGD
SVDPP
STREAMREC

NO. OF TRAINING RECORDS SEEN #106
2 4 6 8 10 12 14 16

M
AE

1.5

2

2.5

3

3.5

4
ALS
PMF
RBM
SGD
SVDPP
STREAMREC

(d) Dating Runtime (e) Dating RMSE (f) Dating MAE

Figure 1: Efficiency and effectiveness plots for Book Crossing and Dating datasets.

2 4 6 8 10 12 14 16
NO. OF TRAINING RECORDS SEEN #106

3

3.05

3.1

3.15

3.2

3.25

3.3

3.35

3.4

R
M

SE

NO. OF HASH FNS.=20
NO. OF HASH FNS.=50
NO. OF HASH FNS.=100
NO. OF HASH FNS.=500

2 4 6 8 10 12 14 16
NO. OF TRAINING RECORDS SEEN #106

2.55

2.6

2.65

2.7

M
AE

NO. OF HASH FNS.=20
NO. OF HASH FNS.=50
NO. OF HASH FNS.=100
NO. OF HASH FNS.=500

2 4 6 8 10 12 14 16
NO. OF TRAINING RECORDS SEEN #106

0

50

100

150

200

250

300

350

400

R
U

N
TI

M
E

(IN
 S

EC
S.

)

NO. OF HASH FNS.=20
NO. OF HASH FNS.=50
NO. OF HASH FNS.=100
NO. OF HASH FNS.=500

(a) Dating RMSE (b) Dating MAE (c) Dating Runtime

Figure 2: Sensitivity plots for Dating dataset.

[7] Y. Koren. Factorization meets the neighborhood: a
multifaceted collaborative filtering model. KDD, pp.
426–434, 2008.

[8] S. Chang, Y. Zhang, J. Tang, D. Yin , Y. Chang, M.
H-Johnson, and T. S. Huang. Streaming
Recommender Systems, https://arxiv.org/pdf/
1607.06182v1.pdf, 2016.

[9] Y. Koren and R. Bell. Advances in collaborative
filtering. Recommender Systems Handbook, Springer,
pp. 145–186, 2011.

[10] Y. Koren, R. Bell, and C. Volinsky. Matrix
factorization techniques for recommender systems.
Computer, 42(8), pp. 30–37, 2009.

[11] P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, and
J. Riedl. GroupLens: an open architecture for
collaborative filtering of netnews. CSCW, pp. 175–186,
1994.

[12] Y. Zhou, D. Wilkinson, R. Schreiber and R. Pan.
Large-Scale Parallel Collaborative Filtering for the
Netflix Prize. Algorithmic Aspects in Information and
Management. Shanghai, China. pp. 337-348, 2008.

[13] R. Salakhutdinov and A. Mnih. Bayesian Probabilistic

Matrix Factorization using Markov Chain Monte
Carlo. ICML, 2008.

[14] G. Hinton. A Practical Guide to Training Restricted
Boltzmann Machines. University of Toronto, Tech
report UTML TR 2010-003, 2010.

[15] A. Karatzoglou, A. J. Smola, and M. Weimer.
Collaborative Filtering on a Budget, AISTATS, pp.
389–396, 2010.

[16] J. Z. Sun, K. R. Varshney, K. Subbian. Dynamic
matrix factorization: A state space approach.
ICASSP, pp. 1897–1900, 2012.

[17] Y. Huang, B. Cui, W. Zhang, J. Jiang, and Y Xu.
Tencentrec: Real-time stream recommendation in
practice, SIGMOD, pp. 227–238, 2015.

[18] www2.informatik.uni-freiburg.de/˜cziegler/BX/

[19] www.occamslab.com/petricek/data/

[20] E. Diaz-Aviles, L. Drumond, L. Schmidt-Thieme, and
W. Nejdl. Real-time top-n recommendation in social
streams. RecSys, 2012.

[21] A. S. Das, M. Datar, A. Garg, and S. Rajaram.
Google News Personalization: Scalable Online
Collaborative Filtering. WWW, 2007.

