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Introduction



Motivation

• Large Language Models (LLMs) are increasingly taking the

space once occupied by search

• If LLMs are to make the jump to playing a key role in high
stakes decision making, understanding causality is crucial. It is
also useful for:

• Refining LLMs’ depth and applicability

• Enhancing trust

• Improving interpretability

• Advancing towards Artificial General Intelligence (AGI)
(why not?!)

• Current LLMs may mimic causal language without true

comprehension
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Goals and Contributions

• Research Goal: Develop a framework to enhance LLMs’

causal reasoning ability.

• Contributions:

• CARE-CA Framework: A novel architecture that

incorporates explicit and implicit causal reasoning.

• CausalNet Dataset: A new dataset for benchmarking causal

reasoning tasks in LLMs.
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CARE-CA Framework



CARE-CA: Overview

• It stands for Context-Aware Reasoning Enhancement with

Counterfactual Analysis

• Combines explicit and implicit causal reasoning

• Key components:

• Contextual Knowledge Integrator (CKI): Uses ConceptNet

for external knowledge to understand causal relationships.

• Counterfactual Reasoning Enhancer (CRE): Introduces

“what-if” scenarios to confirm causal relationships.

• Context-Aware Prompting Mechanism (CAPM): Enriches

prompts to guide LLMs towards accurate causal reasoning.

Goal: Achieve accurate and comprehensive causal understanding.
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CARE-CA: Architecture
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Figure 1: CARE-CA: Architecture
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CARE-CA: Example

“My body cast

a shadow over

the grass.”

“The sun

was rising.”

“The grass

was cut.”

Correct

Hypothesis

cause not cause

Without CARE-CA

“My body cast a

shadow over the grass.”

“The sun

was

rising.”

“The

grass was

cut.”

Correct Hypothesis

“ConceptNet Integra-

tion: ‘Shadows’ related

to ‘light source’.”

“Contextual Prompt-

ing: Hypotheses

contextualized

with time of day.”

“Counterfactual

Reasoning:

‘What if no light

source?’ scenario.”

“Improved Causal

Reasoning: Correct

hypothesis identified

with context and

counterfactuals.”

cause not cause

With CARE-CA

Figure 2: CARE-CA: Before and After
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Datasets and Evaluation



Datasets

• Existing datasets:

• COPA: Causal discovery

• e-care: Domain-specific causal reasoning

• TimeTravel: Counterfactual reasoning

• CLadder and Com2Sense: Causal relationship identification

• Introduced CausalNet dataset:

• 1000 scenarios testing causal and counterfactual reasoning.

• Example entry with detailed narrative and causal questions.

• Metrics: Accuracy, Precision, Recall, and F1.
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Results



Performance Comparison

• CARE-CA model

excels in causal

reasoning across

datasets and tasks.

• On CausalNet, it

achieves 94.6% mean

accuracy,

demonstrating

superior performance

in diverse causal

contexts.

Figure 3: CARE-CA Performance
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Performance Comparison

• CausalNet dataset

enhances performance

across all models.

• T5 shows highest

improvement with

94.2% accuracy.

Results demonstrate

CausalNet’s

effectiveness in

boosting causal

reasoning capabilities.

Figure 4: CausalNet Performance
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Key Findings

• CARE-CA outperformed traditional LLMs across tasks

• Exceptional performance on CausalNet (94.6% accuracy)

• Improved performance in:

• Causal discovery

• Causal relationship identification

• Counterfactual reasoning

• Demonstrated robustness across diverse causal contexts
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Conclusion and Future Work



Conclusion

• CARE-CA significantly enhances causal reasoning in LLMs

• Successfully bridges data-driven and knowledge-driven causal

inference

• CausalNet provides a new benchmark for causal reasoning

evaluation

• Paves the way for more interpretable and reliable AI systems
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Future Directions

• Explore hybrid models combining breadth and depth of

knowledge

• Develop fine-tuning strategies for domain-specific adaptations

• Expand multilingual capabilities of CARE-CA

• Optimize framework for diverse domains and complex

scenarios

• Further research on transparency and explainability
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Thank You

Questions?
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