The Intrinsic Scale Of Networks Is Small

Malik Magdon-Ismail, Kshiteesh Hegde

Department of Computer Science Rensselaer Polytechnic Institute - Troy, NY

Aug 30, 2019

Malik Magdon-Ismail, Kshiteesh Hegde

Intrinsic Scale

Aug 30, 2019 1 / 11

At what (small) scale does a network identify itself?

- "From what?", one asks. "From another network", another responds.
- The intrinsic scale of one network should not depend on the properties of another network.
- We propose a methodology, which, given a network N with n vertices and m edges, extracts the intrinsic scale.
- Results from several networks reveal a surprising conclusion: *The intrinsic scale of real networks is* 7 – 20 *vertices*
- This means, these networks have non-trivial structure at small scales.
- Old school parameters such as power-law exponents and clustering coefficients may not be stable at this scale.

Subgraphs Induced by Random Walks

- Network N has structure at scale κ if typical size-κ subgraphs from N are distinguishable from size-κ subgraph in a randomized copy of N.
- If N_{δ} is a perturbed copy of N where δ is the extent of perturbation, then $N_0 = N$ and N_{∞} is a random graph with the same degrees as N
- To construct N_{δ} , we use random edge-swaps to rewire the network as shown below.

• Observe that an edge swap preserves every vertex-degree. This is what a sequence of edge swaps on a toy graph looks like:

Defining the Intrinsic Scale

Let a random walk W traverse a random incident edge at each step.
After visiting κ different nodes, construct the induced subgraph:

$$W: (N_{\delta}, \kappa) \mapsto G(\kappa, \delta)$$

where $G(\kappa, \delta)$ is a random graph that depends on N_{δ} , the starting node and the edges traversed.

- The process W induces a distribution $p_{\kappa,\delta}$ over graphs with κ vertices.
- Existing structure in N_0 at scale κ is lost during δ steps of randomization if $p_{\kappa,0}$ and $p_{\kappa,\delta}$ are distinguishable.
- The Bayes *optimal* classifier for the distributions $p_{\kappa,0}$ and $p_{\kappa,\delta}$ has classification accuracy:

$$\Delta(\kappa, \delta) = \frac{1}{2} \sum_{G} \max\{p_{\kappa,0}(G), p_{\kappa,\delta}(G)\}$$

For τ > ½, let κ^{*}(τ, δ) be the minimum scale κ at which one can distinguish κ-sized subgraphs of N from those in N_δ with accuracy at least τ,

$$\kappa^*(\tau, \delta) = \min\{\kappa | \Delta(\kappa, \delta) \ge \tau\}.$$

The intrinsic scale is

$$\kappa^*(\tau) = \lim_{\delta \to \infty} \kappa^*(\tau, \delta).$$

 The process W is responsible for producing κ-sized subgraphs, the details of which can affect specific values of κ^{*}. Estimate $\Delta(\kappa, \delta)$:

- Given N_0 , construct N_δ using δ edge-swaps.
- **2** Sample κ -sized subgraphs from N_0 and N_{δ} to get a training set $\{G_{\kappa,0}\}^{\text{train}}$ and $\{G_{\kappa,\delta}\}^{\text{train}}$.
- Use the training set to learn a classifier

$$g_{\kappa,\delta}$$
: $G_{\kappa} \mapsto \pm 1$.

 $(+1 \text{ for } N_0, -1 \text{ for } N_\delta).$

- Test the learned classifier g_{κ,δ} on independent test subgraphs {G_{κ,0}}^{test} and {G_{κ,δ}}^{test}.
- Solution $\hat{\Delta}(\kappa, \delta)$, the test accuracy of $g_{\kappa, \delta}$.

edge swaps

network with

Robust Networks are Mostly Immune to Small Perturbations

Small δ :Robustness; Large δ :Structure

Figure: Learning curves for $\kappa = 16$

Summary of findings:

- Trend: High $\gamma \implies$ High $\kappa *$
- Exception: Human PPI is very robust and yet very structured.
- The intrinsic scale of real networks is between 7 20

What next?

- Can we construct his networks and models wrt. the structure-robustness a trade-off?
- How to construct networks that break said trade-off?
- Can we use the intrinsic scale to improve other network analysis algorithms like clustering?

Email: magdon@cs.rpi.edu

э

< □ > < ---->